VU Rendering SS 2015 186.101

Thomas Auzinger Károly Zsolnai

Institute of Computer Graphics and Algorithms (E186) Vienna University of Technology <u>http://www.cg.tuwien.ac.at/staff/ThomasAuzinger.html</u> <u>http://www.cg.tuwien.ac.at/staff/KarolyZsolnai.html</u>

VU Rendering SS 2015 Unit 05 – Subsurface Scattering

So far...

Light interaction with surfaces

Light interaction with volumes

Something in Between

Surface Scattering (BRDF)

Subsurface Scattering (BSSRDF)

Can be simulated with standard methods, e.g. volumetric path tracing

General

Can be simulated with standard methods, e.g. volumetric path tracing

General

Many materials are highly-scattering, e.g. Milk albedo 0.9987 → 27% energy after 1000 scatterings

General techniques very expensive

Can be simulated with standard methods, e.g. volumetric path tracing

General

Many materials are highly-scattering, e.g. Milk albedo 0.9987 \rightarrow 27% energy after 1000 scatterings

General techniques very expensive

BUT: after many bounces the light distribution becomes isotropic (i.e. the same in all directions)

Diffusion Approximation

 Assume infinite medium

Diffusion Approximation

 Assume infinite medium

Split radiance $L(r, \vec{\omega})$ into single scattering $L_s(r, \vec{\omega})$ and multiple scattering term $L_m(r, \vec{\omega})$

Diffusion Approximation

 Assume infinite medium

- Split radiance $L(r, \vec{\omega})$ into single scattering $L_s(r, \vec{\omega})$ and multiple scattering term $L_m(r, \vec{\omega})$
- Average over multiple directions of multiple scattering term

$$L_m(r,\vec{\omega}) \to \phi(r) = \int_{4\pi} L_m(r,\vec{\omega}) d\vec{\omega}$$

- Radiative Transfer Equation becomes diffusion equation $\nabla^2 \phi(r) - 3 \ c \ \phi(r) = 0$, c = const.
- Solve for semi-infinite slab

$$R(r) = ?$$

- Radiative Transfer Equation becomes diffusion equation $\nabla^2 \phi(r) - 3 \ c \ \phi(r) = 0$, c = const.
- Solve for semi-infinite slab

 $R(r) \propto z_r R_r(r) + z_v R_v(r)$

Multiple-scattering approximated

 $S(x_i, \vec{\omega_i}; x_o, \vec{\omega_o}) = S_s(x_i, \vec{\omega_i}; x_o, \vec{\omega_o}) + S_m(x_i, \vec{\omega_i}; x_o, \vec{\omega_o})$

 $S_m(x_i, \vec{\omega_i}; x_o, \vec{\omega_o}) \propto F(\vec{\omega_i}) R(\|x_i - x_o\|) F(\vec{\omega_o})$

 $S_m(.) \dots$ diffuse part of the BSSRDF $F(.) \dots$ Frensel terms on entry and exit $R(.) \dots$ dipole approximation of diffuse transport

Add single scattering as in volumetric ray marching.

BRDF $L_o(x, \vec{\omega}_o) = \int_{\Omega} L_i(x, \vec{\omega}_i) f_r(x, \vec{\omega}_i, \vec{\omega}_o) \cos \theta \ d\vec{\omega}_i$

BSSRDF $L_o(x_o, \vec{\omega}_o) = \int_A \int_\Omega L_i(x_i, \vec{\omega}_i) S(x_i, \vec{\omega}_i; x_o, \vec{\omega}_o) \cos \theta \ d\vec{\omega}_i \ dA(x_i)$

- Integrate over both hemisphere and area
- Single-scattering by ray marching
- Multiple scattering by sampling x_i around x_o
 with exponential density.

Fresnel term

Single scattering

Multiple scattering (diffusion)

Full BSSRDF

BRDF

Realtime Example

Dipol approximation not valid for materials that are

- thin
- layered
- heterogeneous

Use multipol expansion (i.e. more terms in the initial approximation

Questions?

Teapot without and with subsurface scattering

(from Lehtinen et al. 2011)